Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2,2'-Diamino-4,4'-bi-1,3-thiazole- $\kappa^{2} N, N^{\prime}$)-bis(glycinato- $\kappa^{2} N, O$)zinc(II) dihydrate

Bing-Xin Liu, Jian-Yong Yu ${ }^{\text {a }}$ and Duan-Jun Xu ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Shanghai University, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.021$
$w R$ factor $=0.054$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title $\mathrm{Zn}^{\text {II }}$ complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Zn}^{\text {II }}$ ion is coordinated by two glycinate anions and a diaminobithiazole (DABT) molecule in a distorted octahedral geometry. Two thiazole rings of the same DABT are twisted with respect to each other with a dihedral angle of $10.56(6)^{\circ}$. The glycinate chelates to the $\mathrm{Zn}^{\mathrm{II}}$ ion by the amino N and carboxylate O atoms; the chelating five-membered ring displays an envelope configuration. A twofold rotation axis passes through the Zn atom and the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the two thiazole rings.

Comment

We are interested in metal complexes with diaminobithiazole (DABT) because of their potential magnetic properties (Sun et al., 1997). As part of an ongoing investigation of DABT complexes (Liu et al., 2001), we present here the crystal structure of the title $\mathrm{Zn}^{\text {II }}$ complex, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. A twofold rotation axis passes through the Zn atom and the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the two thiazole rings. Two glycinate anions and one DABT molecule chelate to the $\mathrm{Zn}^{\text {II }}$ ion in a distorted octahedral geometry (Table 1). Thiazole rings of the same DABT are twisted with respect to the each other with a dihedral angle of $10.56(6)^{\circ}$, comparable to the $\mathrm{Co}^{\mathrm{II}}$ analog [9.68 (6) ${ }^{\circ}$; Yu et al., 2005]. The chelating five-membered ring of the glycinate anion displays an envelope conformation, atom N3 being displaced 0.390 (2) A from the mean plane formed by the other four atoms.

The classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network stabilizes the crystal structure (Table 2).

Experimental

An aqueous solution (20 ml) containing DABT (1 mmol) and ZnCl_{2} (1 mmol) was mixed with another aqueous solution (10 ml) of glycine $(2 \mathrm{mmol})$ and $\mathrm{NaOH}(1 \mathrm{mmol})$. The mixture was refluxed for 4 h . The

Received 21 November 2005 Accepted 6 December 2005 Online 10 December 2005
solution was filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after one week.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=447.79$
Monoclinic, $C 2 / \mathrm{c} / \mathrm{c}$
$a=13.21(2) \AA$
$b=9.0063(16) \AA$
$c=14.124(2) \AA$
$\beta=92.365(6)^{\circ}$
$V=1667.7(5) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.628, T_{\text {max }}=0.750$
7912 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.054$
$S=1.08$
1918 reflections
115 parameters
H -atom parameters constrained

Table 1
Selected bond lengths (\AA).

Zn-O1	$2.1714(11)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.3901(19)$
Zn-N1	$2.1823(13)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.3212(19)$
Zn-N3	$2.1185(13)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.333(2)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.7219(19)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.344(2)$
$\mathrm{S} 1-\mathrm{C} 3$	$1.7417(17)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.469(3)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {ii }}$	0.88	2.18	2.976 (2)	151
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 2$	0.90	2.00	2.878 (2)	167
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {i }}$	0.87	2.37	3.098 (2)	141
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iii }}$	0.86	2.09	2.9059 (19)	159
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {iv }}$	0.88	2.47	3.3209 (19)	165
N3-H3B $\cdots \mathrm{O} 1 W^{\text {v }}$	0.90	2.22	3.051 (2)	154

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $\quad-x+1,-y+2,-z+1$; (iii)
$x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} ;$ (iv) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $x,-y+2, z-\frac{1}{2}$.
H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.97 \AA$ (methylene), and included in the final cycles of refinement as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

$$
\begin{aligned}
& D_{x}=1.783 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 5886 \\
& \text { reflections } \\
& \theta=2.8-25.0^{\circ} \\
& \mu=1.77 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.25 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

1918 independent reflections
1808 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-10 \rightarrow 11$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0209 P)^{2}\right. \\
& +2.0364 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0134 (5)

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds [symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$].

Other H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M. Y. (2001). Acta Cryst. C57, 354-355.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sun, W., Gao, X. \& Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309-2315.
Yu, J.-R., Liu, B.-X. \& Xu, D.-J. (2005). Acta Cryst. E61, m2232-m2233.

